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Enhanced ultra-low-frequency interlayer
shear modes in folded graphene layers
Chunxiao Cong1 & Ting Yu1,2,3

Few-layer graphene has attracted tremendous attention owing to its exceptional electronic

properties inherited from single-layer graphene and new features led by introducing extra

freedoms such as interlayer stacking sequences or rotations. Effectively probing interlayer

shear modes are critical for unravelling mechanical and electrical properties of few-layer

graphene and further developing its practical potential. Unfortunately, shear modes are

extremely weak and almost fully blocked by a Rayleigh rejecter in Raman measurements. This

greatly hinders investigations of shear modes in few-layer graphene. Here, we demonstrate

enhancing of shear modes by properly folding few-layer graphene. As a direct benefit of the

strong signal, enhancement mechanism, vibrational symmetry, anharmonicity and electron–

phonon coupling of the shear modes are uncovered through studies of Raman mapping,

polarization- and temperature-dependent Raman spectroscopy. This work complements

Raman studies of graphene layers, and paves an efficient way to exploit low-frequency shear

modes of few-layer graphene and other two-dimensional layered materials.
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F
ew-layer graphene (FLG) possesses unique properties of
crystal structure, lattice dynamics and electronics. Rich
physics and promising practical potential have been

exploited, such as energy band gap opening in Bernal-stacked
bilayer graphene (BLG)1; varying responses in the integer
quantum Hall effect measurements for ABA- and ABC-stacked
trilayer graphene (TLG)2; and the formation of Van Hove
singularity (VHS) in folded or twisted double-layer graphene3–6.
Raman spectroscopy is one of the most useful and versatile
techniques to probe graphene layers as has been demonstrated
in the studies of number of layers, strain, doping, edges,
stacking orders, and even magneto–phonon coupling in
graphene layers7–22. The unique and powerful advantage of
Raman spectroscopy for probing graphene is the instant benefit of
the truth that the fundamental vibrational modes such as G, G0

and D modes are highly involved in resonant scattering processes,
which leads to a very strong signal, facilitates many unfulfillable
measurements with a weak Raman signal and provides an
effective way to probe phonons and electronic band structures
through strong electron–phonon coupling (EPC). In addition to
these well-known fundamental modes, some other weak
modes such as higher order, combinational and superlattice
wave vector-mediated phonon modes have been observed in
either Bernal- or nonBernal-stacked graphene layers23–28. They
all carry interesting and important information about lattice
vibration and electronic band structures.

Another very fundamental and intrinsic vibrational mode in
FLG and bulk graphite is rigid interlayer shear mode, involving
the relative motion of atoms in adjacent layers29,30. Vibrational
energies of shear modes vary when the thickness and
consequently the restoring force strength of Bernal-stacked
graphene layers changes as being demonstrated by the
experimental observation and perfectly modelled by a simple
linear chin system29. Therefore, this shear mode, named C peak
can be used as another Raman spectroscopic feature for
identifying the thickness of Bernal-stacked graphene layers.
Considering its low energy,B5 meV, researchers believe the C
peak could be a probe for the quasiparticles near the Dirac point
through quantum interference29. However, the low energy also
causes direct observation of shear modes being extremely
challenging, because the shear modes are so close to the
excitation photons and fully suppressed by a notch or edge
filter of most Raman instruments. To directly detect this C peak,
low-doped Si substrate with pre-etched holes was used in the
previous study29. Although the C peak of the suspended graphene
layers was observed on such specially prepared substrate, it is still
very weak, especially for BLG and TLG, which happen to be the
most interesting and promising candidates of the graphene family
together with single-layer graphene. Therefore, the extremely
weak signal severely limits study of shear mode and its coupling
with other particles. After the pioneering work29, very few
experimental observations of the first-order fundamental shear
modes of FLG were reported31.

Here we report an enhancement of shear modes in folded
graphene layers with certain rotational angles which also present
the enhanced G mode due to the twist/folding induced VHS32.
These folded graphene layers, including partially folded BLG,
TLG and six-layer graphene are labelled as 2þ 2 r-f4LG, 3þ 3
r-f6LG and 6þ 6 r-f12LG, respectively, in this work. Here, ‘r’
refers to the enhanced G mode from the resonance scattering.
Instead of specially prepared substrate of low-doped Si with array
of micro-holes29, we use the typical substrates of highly doped Si
with a 285-nm SiO2-capping layer. The extremely strong signal,
comparable or even stronger than the enhanced G mode, enables
measurements of two-dimensional (2D) Raman mapping,
polarization- and temperature-dependent Raman spectroscopy

of this low-frequency shear mode for the first time, and further
unravels its enhancement mechanism, vibrational symmetry,
anharmonicity and EPC.

Results
Enhanced shear modes by folding. In our previous study, we
classified folded graphene layers into three types by the folding or
rotational angles y as ysmall, ymedium and ylarge, for a given exci-
tation laser. These three types of folded graphene layers exhibit
very different Raman spectral features32. Figure 1 shows BLG
with two self-folded regions of rotational angles of 11� (ymedium)
and 21.4� (ylarge,). Excitation laser of 532 nm (Elaser¼ 2.33 eV) was
used for all the Raman measurements in this work. The
significant enhancement of the G mode in the ymedium 2þ 2
r-f4LG can be clearly seen in the Raman image (Fig. 1b) and
spectra (Fig. 1g). Surprisingly, along with the enhanced G mode, a
low-frequency (B30 cm� 1) peak also presents in this 2þ 2
r-f4LG, and it is so strong that the first Raman images of such
low-frequency mode in graphene layers are clearly resolved by
extracting its intensity, position and width (Fig. 1d–f). A single
Lorentzian lineshape peak is used for fitting the Raman peaks in
this study (see Supplementary Fig. 1). Reading the position and
the width of this low-frequency mode and referring to the
previous study of the suspended BLG29, we tentatively assign it to
the interlayer shear mode (C peak or our label, C2) of the ‘mother’
flake, BLG, but with an extremely large enhancement of the
intensity. The good correlation between the enhanced C2 and G
modes is clearly revealed by the Raman images (Fig. 1b,d) and
spectrum (Fig. 1g). Therefore, we believe that they share the same
enhancement mechanism4,6. Although the formation and
influence of VHS in folded or twisted 1þ 1 double-layer
graphene has been intensively studied recently3,4,6, there is no
evidence of the existence of such VHS in ymedium 2þ 2 r-f4LG. In
this work, by adapting the previous methodology33,34, we exploit
the electronic band structure and density of states of such 2D
systems. The VHS with good corresponding to our excitation
photon energy is seen (see Supplementary Fig. 2). We remark that
the non-uniformity appearing in the Raman images of intensity
of the C2 mode (Fig. 1d) might be due to the varying of the
interlayer spacing. A relatively weak peak locating at around
115 cm� 1 is noticed and attributed to a combinational mode of
interlayer breathing mode (B86 cm� 1)35 and the shear mode,
labelled as BþC2 peak herein.

In addition to the enhancement of the G mode, unique Raman
features such as ZO0, R and R’ peaks mediated by either the short-
range twisted bilayer lattice or the supperlattice have also been
reported in 1þ 1 r-fDLG, and these modes exhibit obvious
dependence of peak positions on twisting angles25,36. To further
prove this newly observed ultra-strong low-frequency peak is the
shear mode of the BLG and exploit its nature, we measured other
two pieces of 2þ 2 r-f4LGs, which present R peaks of various
positions (Fig. 2). The rotational angles are determined by
carefully fitting and reading the positions of R peaks25,26 and
double confirmed by both the optical and Raman images as
previously reported32,37. Clearly enough, all C2 peaks are
enhanced and their positions show no dependence on the
rotational angles, which is very much different to the twisting-
angle-dependent peaks discussed previously. The detailed curve
fitting and calculation (see Supplementary Table 1) show the peak
positions and linewidths of these C2 peaks, as well as the derived
interlayer coupling strength by the frequencies of the C2 peaks.
The derived interlayer coupling strength keeps the same as
that of normal Bernal-stacked BLG29. This indicates that the
fundamental shear phonon mode of the ‘mother’ flake, although
could be enhanced by the folding, is very robust even after being
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folded on top of itself, which must be very interesting and
important for exploiting mechanical and electrical properties of
such folded atomically thin layers including graphene and other
2D systems. It is also noticed that the position of the weak
combinational (BþC2) peak does not change when neither of the
rotational angles vary. This further supports our assignment as

both breathing (B) and shear (C2) modes are the fundamental
modes of the ‘mother’ flake and are not affected by the folding.

Not only the 2þ 2 f4LG exhibits three types of folding, 3þ 3
f6LG also follows this criterion. Figure 3 presents optical and
Raman images of ymedium and ylarge 3þ 3 f6LG together with the
Raman images of the low-frequency modes. The same as 2þ 2
r-f4LG, in the region of 3þ 3 r-f6LG, the low-frequency peaks are
remarkably enhanced and correlate very well with the enhanced
G mode as visualized by the Raman images. Therefore, the
responsibility of the folding-induced VHS for the enhancement of
G and C peaks could be extended to the 3þ 3 r-f6LG. As
predicated by the theory29 and illustrated by the diagram
(Fig. 3g), there are two shear modes in Bernal-stacked TLG,
locating at relatively lower- and higher-frequency sides of the
shear mode in BLG. The Raman spectrum (Fig. 3h) of the 3þ 3
r-f6LG clearly presents two modes in the low-frequency region.
The positions and linewidths (see Supplementary Table 2) guide
us to assign these two modes as the Raman-active E00 shear mode
for the lower-frequency one (C31) and the infrared/Raman-active
E0 shear mode for the higher-frequency one (C32). Although
C31 is slightly weaker than C32, it is also significantly enhanced.
This is the first observation of the lower-frequency shear mode,
which is supposed to be extremely weak and could not be
observed even in bulk graphite29. It is noticed that the interlayer
coupling strength derived from the two shear modes of 3þ 3
r-f6LG is nearly identical to the one in the 2þ 2 r-f4LG and the
previously reported29. The peak locating at B120 cm� 1 in
the 3þ 3 r-f6LG is attributed to the combinational mode of
the higher-frequency breathing mode (infrared-active) and the
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Figure 2 | Raman spectra of 2þ 2 r-f4LG. Raman spectra of low and

intermediate frequency modes of 2þ 2 r-f4LG with different rotational

angles as determined by the R peak positions and indicated.

(Elaser¼ 2.33 eV).
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lower-frequency shear mode (Raman-active), labelled as BþC31.
Very interestingly and meaningfully, in a 2þ 3-folded 5-layer
graphene of a medium rotational angle (11.8�), G mode and
shear modes of both BLG and TLG are enhanced (see Fig. 4).
In a 6þ 6 r-f12LG, all five shear modes are clearly resolved and
show perfect agreement with the theoretical predication (see
Supplementary Fig. 3; Supplementary Table 3). This immediately
indicates how robust the formation of VHS in such folded
graphene layers, the enhancement of shear modes and G mode
and the shear modes against the folding could be. The direct
experimental observation of the entire set of the shear modes in
folded FLG must be critical for future investigation of such
interesting 2D systems.

Polarization dependence of enhanced shear modes. Lattice
vibrational symmetry, anharmonicity and EPC are some of the
most important and fundamental properties of crystals, which are

usually reflected by response of phonon modes to local dis-
turbance. To further demonstrate the feasibility of the enhance-
ment of shear modes by a proper folding and more importantly to
exploit these intrinsic properties of FLG, we performed polar-
ization and an in situ temperature-dependent Raman spectro-
scopy study. Figure 5 shows the low-frequency Raman modes and
G modes of 2þ 2 r-f4LG as a function of angles between the
polarization of the incident and scattering lights. The strong and
sharp peak locating at B30 cm� 1 is inert to the change of
polarization configurations, while the intensity of the weak peak
locating at B115 cm� 1 is maximized under the parallel polar-
ization and minimized for the perpendicular configuration. From
our discussion and the assignments above, the enhanced sharp
peak in the 2þ 2 r-f4LG should be the shear mode of Bernal-
stacked BLG with the symmetry of Eg. Thus, it is in-plane two-
fold degenerated and naturally independent to our polarization
configurations as G mode. For the weak peak, the assignment is
the combinational modes of breathing (A1g) and shear (Eg) modes

–128 –112 –30 –15 0

In
te

ns
ity

 (
a.

u.
)

Raman shift (cm–1)

15 30 112 128

C31
C32

B+C31

3+3

a b c

d

g

h

e f

C31 (E′′) C32 (E′)

C2 (Eg)

�large

TLG 20.4°

12.2°

�medium

lG

lC32
lC31

lG’

lB+C31
400 CCD cts

0 CCD cts

400 CCD cts

0 CCD cts

800 CCD cts 800 CCD cts

200 CCD cts

0 CCD cts 0 CCD cts

0 CCD cts

Figure 3 | Raman images and spectrum of 3þ 3 r-f6LG. (a) Optical image of folded TLG. The folding types are identified and labelled by their rotational

angles. Raman intensity images of (b) G mode; (c) G0 mode; (d) lower-frequency shear mode (C31); (e) higher-frequency shear mode (C32) and

(f) combinational mode (BþC31). (g) Schematic diagram of shear modes in BLG and TLG. (h) Raman spectrum of low-frequency modes of 3þ 3 r-f6LG

with rotational angle of 12.2�. (Elaser¼ 2.33 eV). Scale bars, 2 mm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5709

4 NATURE COMMUNICATIONS | 5:4709 | DOI: 10.1038/ncomms5709 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


in 2þ 2 r-f4LG. Since the out-of-plane breathing mode (A1g)
contributes to the combinational modes, the intrinsic polarization
nature of the A1g mode is perfectly responsible for the polar
dependence of the weak peaks locating at B115 cm� 1, which
shows zero intensity under anti-parallel and maximum for
parallel polarization configuration. More discussion can be found
in the Supplementary Information (see Supplementary Note 1).

Temperature dependence of enhanced shear modes. In situ
temperature-dependent Raman spectroscopy is one of the most
powerful tools to probe phonons, an assembling of lattice vibra-
tion and their interaction with other particles/quasiparticles. In
Fig. 6, we present the evolution of the enhanced shear mode of
BLG in a temperature range of 90–390 K. First, we compare our
thermal chamber temperature readings with the sample local
temperatures estimated from the intensity ratio of Stokes and
anti-Stokes38 (see Supplementary Note 2). The fairly good
agreement between each other affirms that the laser heating
could be neglected (Fig. 6b). Now, we focus on the line shift as a
function of temperatures. A redshift of the shear mode as the

increase of temperatures is observed (Fig. 6c upper panel). In the
previous studies, the similar redshift of the G mode is also
reported, and the frequency of G mode at 0 K and the first-order
temperature coefficient were extracted by a linear fitting39.
Softening of phonons at a higher temperature is common for
many crystals owing to the enlarged bonds length due to the
thermal expansion. However, graphene is exceptional as it has
quite a large negative thermal expansion, potentially leading to a
blueshift instead, which actually has been well probed in the
previous studies40,41. Although single-layer graphene anchoring
on a substrate might be pinned down and follows the thermal
expansion of the substrate, the shearing movement of the
2þ 2 f4LG should be much free. Thus, there must be extra
contribution to the overall softening of the shear mode with the
increase of temperatures. The response of phonon frequency
to the temperatures is a very effective manifestation of the
anharmonicity. Two effects are usually responsible for the
temperature-dependent line shift: anharmonic multiple phonons
coupling and crystal thermal expansion40. We speculate that the
anharmonic multiple phonons coupling should be the main
reason for the softening of shear mode phonons with the increase
of temperatures. Following the previous strategy40, we fit our
experimental data by a polynomial function, which carries the
total effects of lattice thermal expansion and anharmonic
phonons coupling. The perfect agreement of each other
confirms our speculation. The frequency of the shear mode of
BLG at 0 K is extrapolated to be o(0)¼ 32.6 cm� 1, which is
critical for many further investigations, for example, probing the
influence of phonon–phonon coupling on the linewidth of the
phonon mode as discussed below. As comparison, the linear
fitting is also shown here. Apparently, the nonlinear one is much
more suitable, as also employed in the previous study41.

Now, we move to the linewidth. In a defect-free crystal, the
intrinsic linewidth (gin) is defined by: gin¼ gph–phþ ge–ph, where
gph–ph represents the anharmonic phonon–phonon coupling and
ge–ph is from the electron–phonon interaction42. For gph–ph, a
possible decay channel could be one shear mode phonon splits
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into two acoustic phonons of the same energy and opposite
momentum29 as described by: gph–ph¼ gph–ph (0)[1þ 2n(o0/2)],
where gph–ph(0) and o0 is the linewidth caused by the
anharmonic phonon–phonon coupling and the frequency of the
shear mode at 0 K, respectively. n(oT)¼ 1/[exp(:oT/KBT)� 1] is
the phonon occupation number, where :oT is the shear mode
phonon energy at temperature T and KB is the Boltzmann
constant43. Rather than fixing the phonon energy, that is,
196 meV in the previous study of the G mode40, we substitute
individual phonon energy of the shear mode at corresponding
temperature because the variation of the G phonon energy is only
around 0.3% in our temperature measurement window, whereas
upto 8% is noticed for the shear mode phonon energy. EPC also
contributes and even becomes a dominant contribution to
linewidth in a gapless system such as graphene, graphite
and metallic carbon nanotubes15,44. For ge–ph, it should follow:
ge–ph¼ ge–ph(0)[f(� :o/2KBT)� f(:o/2KBT)], where ge–ph (0) is
the width resulting from the EPC at 0 K and f(x)¼ 1/[exp(x)þ 1].
In this work, we fitted our data by considering both the
anharmonic phonon decay (gph–ph) and the EPC (ge–ph). A
fairly good agreement could be achieved (Fig. 6c). gph–ph(0) and
ge–ph (0) are extrapolated to be 0.02 and 17.27 cm� 1, respectively.

To further elucidate the origin of the linewidth or the phonon
lifetime of the shear mode, we plot the contribution of gph–ph and
ge–ph in Fig. 6c. It is obvious that the ge–ph is more dominant,
especially at low temperatures. We expect a substantial EPC-
induced increment of linewidth of shear mode at cryogenic
temperature. Such decrease of phonon lifetime could be well
interpreted as, at very low temperature the occupation of
conduction band near the Dirac point by the thermal-excited
electrons could be significantly suppressed, and as a result of the
creation of phonon-excited electron–hole pairs and thus their
interactions (EPC) are remarkably activated, leading to the
broadening of Raman peaks. The large contrast of the phonon
energies of the shear and G modes explains why the G mode is
much broader than the shear mode, and a large EPC of the G
mode could be preserved even at a high temperature29.

Discussion
Together with previous intensive Raman scattering studies of D,
G and G0 modes of graphene layers, our systematic studies of the
low-frequency interlayer shear modes of folded FLG complement
the probing of fundamental Raman studies of layered carbon
materials. The folding-induced VHS promotes a remarkable
enhancement of the shear modes as it does on the G mode. The
in-plane two-fold degenerated symmetry, the anharmonicity and
EPC of the shear modes are well exploited through 2D Raman
mapping, polarization- and temperature-dependent Raman
spectroscopy of the strongly enhanced low-frequency shear
modes in folded FLG (B5 meV), which was far away from being
accessible before. More insight understandings of mechanical and
electrical properties and further developments of practical
applications of FLG are expected to be achieved soon through
investigations of the enhanced shear modes in the stretched,
electrically or molecularly doped folded FLG and even under a
magnetic field.

During the preparation of this manuscript, we became aware
that the enhancement of shear modes in few-layer graphene
scrolls was reported45.

Methods
Sample preparation. Graphene layers were prepared by the mechanical cleavage
of graphite and transferred onto a 285-nm SiO2/Si substrate. During the
mechanical exfoliation process, some graphene flakes flipped over and folded
themselves partially and accidentally. Such interesting folded graphene layers were
located under an optical microscope. The number of layers of the unfolded part
was further identified by white-light contrast spectra and Raman spectroscopy46.
The folding or rotational angles were determined by reading the R peak
position25,26 and double checked by their geometrical morphologies visualized in
their optical and Raman images37.

Raman spectroscopy study. A WITec Raman system with a low-wavenumber
coupler, a 600 lines per mm grating, a piezocrystal-controlled scanning stage, a
� 100 objective lens of NA¼ 0.95 was used for the Raman images. For Raman
spectra, a 2,400 lines per mm grating was used and guaranteed a spectral resolution
of 0.9 cm� 1, which was obtained by monitoring the linewidth of the Mercury
atomic emission line. The in situ temperature-dependent Raman measurements
were conducted in a Linkam thermal stage with a � 50-long working distance
objective lens of NA¼ 0.55. The linewidths of Raman peaks were corrected by
subtracting the broadening of our system of 0.9 cm� 1 from the fitted values. The
s.e. of curve fitting were reflected by the error bars. All the Raman images and
spectra were recorded under an excitation laser of 532 nm (Elaser¼ 2.33 eV). To
avoid the laser-induced heating, laser power was kept below 0.1 mW.
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values. The error bars shown here are s.e. of curve fitting. (Elaser¼ 2.33 eV).
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